Milestone 4 (Individual) – Cover Page

Team Number:

26

Please list full name and MacID.

Full Name:	MacID:
Hassan Bokhari	Bokharh

MILESTONE 4 (STAGE 1) – PRELIMINARY MATERIALS SELECTION

Team Number:

42

Complete worksheets on the following pages, considering **2 candidate materials** you will consider for your selected implant component. Each worksheet includes a table for 1 of the 3 materials selection criteria (structure, properties, processing).

- $\rightarrow\,$ You only need to consider ${\rm ONE}$ implant component
 - \circ All team members should consider the same component for their independent materials selection
- → Remember, you only need to research 2 of the 3 criteria (i.e., only complete **TWO** of the 3 worksheets)
 - \circ $\,$ Consider the same candidate materials when completing each worksheet
 - Complete your worksheets before coming to Design Studio 10

Implant Component:	Femoral Head
-----------------------	--------------

MILESTONE 4 (STAGE 1) – PRELIMINARY MATERIALS SELECTION **STRUCTURE**

Complete this worksheet if you are researching **STRUCTURE** as one of your two required materials selection criteria.

Material	Class	Atomic Arrangement	Interatomic Bonding	Molecular formula
316L AISI Alloyed Stainless Steel	Metal alloy/ Ferritic [1]	Figure 1: The 108 atoms supercell of 316L stain- less steel generated with the SQS method (left), [2] Ferritic – cube, shape, crystal, structure [2]	- Metallic Bonding - Method towards creating alloy and metallic bonds involves Thermoplastic Bonding (TPB) creating atomic diffusion at high temperatures [3]	Fe Cr Ni 73 21 14[2]
BIOLOX Delta (patented name) Professionally known as Zirconia- toughened alumina – 14 (ZTA – 14) [4]	Composite Ceramics [5]	AlgrMO ₇₂ TA-14 [6] [7] Monoclinic crystalline structure transformed from compressed tetragonal crystal structure [6]	 Zr-O bonds quantify many strength properties of material. [7] Strong interatomic bonding in comparison with other RE's (reactive elements) [7] Ionic bonding [6] 	Zr-Al ₂ O ₃ [6]

42

Team Number:

MILESTONE 4 (STAGE 1) – PRELIMINARY MATERIALS SELECTION **PROPERTIES**

Complete this worksheet if you are researching **PROPERTIES** as one of your two required materials selection criteria.

Material	Elastic Modulus	Ultimate Strength	Toughness, Fracture	Wear	Corrosion Resistance	Biological properties
316L AISI Alloyed Stainless Steel	200 GPa [8]	586 MPa [8]	112-278 MPa m ^{1/2} [9]	High wear resistance that can be increased with surface coating [10]	Superior corrosion resistant compared to other metals [8] -Performs well against corrosion in fresh water and saltwater systems [8] -Studies do show slight susceptibility to corrosion in biological environment long term. [10]	 Studies show biocompatibility of metal inside human body applications of implants etc. [10] Adequate osteointegration [10] Demonstrates superior biocompatibility [10]
BIOLOX Delta (patented name) Professionally known as Zirconia- toughened alumina – 14 (ZTA – 14) [4]	338 GPa [6]	689 MPa [11]	5-7 MPa.m1/2 [11]	Very hard and wear resistant [11]	-Very high corrosion strength even when put under pressure in different temperature environments [11]	 -Relatively low volume to weight ratio advantageous to medical applications [11] -Suitable for orthopedic load-bearing components [12] -No adverse tissue reactions after implantation [12] -Great biocompatibility [12] -Chemical inertness [12] -Doesn't account for osteointegration [12]

Works Cited

316L AISI Alloyed Stainless Steel

- "Stainless steel | Definition, Composition, Types, & Facts | Britannica." <u>https://www.britannica.com/technology/stainless-steel</u> (accessed Nov. 28, 2022).
- [2] E. Bévillon, J. P. Colombier, B. Dutta, and R. Stoian, "Ab initio nonequilibrium thermodynamic and transport properties of ultrafast laser irradiated 316l stainless steel," *Journal of Physical Chemistry C*, vol. 119, no. 21, pp. 11438–11446, May 2015, doi: 10.1021/ACS.JPCC.5B02085.
- [3] K. W. Dong, J. Kong, Y. Peng, Q. Zhou, and K. H. Wang, "Thermoplastic bonding of TC4 and 316L stainless steel with a Ti-based bulk metallic glass as the filler metal," *Journal of Materials Research and Technology*, vol. 11, pp. 487–497, Mar. 2021, doi: 10.1016/J.JMRT.2021.01.042.
- [8] "Specification Sheet: Alloy 316/316L," Jun. 2014. <u>https://www.sandmeyersteel.com/images/316-316l-317l-spec-sheet.pdf</u> (accessed Nov. 28, 2022).
- [9] H. Alsalla, L. Hao, and C. Smith, "Fracture toughness and tensile strength of 316L stainless steel cellular lattice structures manufactured using the selective laser melting technique," *Materials Science and Engineering: A*, vol. 669, pp. 1–6, Jul. 2016, doi: 10.1016/J.MSEA.2016.05.075.
- [10] N. S. Al-Mamun, K. Mairaj Deen, W. Haider, E. Asselin, and I. Shabib, "Corrosion behavior and biocompatibility of additively manufactured 316L stainless steel in a physiological environment: the effect of citrate ions," *Addit Manuf*, vol. 34, p. 101237, Aug. 2020, doi: 10.1016/J.ADDMA.2020.101237.

Zirconia-Toughened Alumina - 14

- [4] T. Tateiwa *et al.,* "Burst Strength of BIOLOX[®] delta Femoral Heads and Its Dependence on Low-Temperature Environmental Degradation," *Materials 2020, Vol. 13, Page 350*, vol. 13, no. 2, p. 350, Jan. 2020, doi: 10.3390/MA13020350.
- [5] Md. A. Gafur *et al.*, "Structural and Mechanical Properties of Alumina-Zirconia (ZTA) Composites with Unstabilized Zirconia Modulation," *Materials Sciences and Applications*, vol. 12, no. 11, pp. 542–560, Nov. 2021, doi: 10.4236/MSA.2021.1211036.
- [6] "ZIRCONIA-TOUGHENEDALUMINA: WHY," 2021, Accessed: Nov. 28, 2022. [Online]. Available: https://www.ceramics.net/sites/default/files/stc-white-paper-zta-zirconia-toughened-alumina-01062021.pdf
- [7] S. L. Shang, Y. Wang, B. Gleeson, and Z. K. Liu, "Understanding slow-growing alumina scale mediated by reactive elements: Perspective via local metaloxygen bonding strength," *Scr Mater*, vol. 150, pp. 139–142, Jun. 2018, doi: 10.1016/J.SCRIPTAMAT.2018.03.002.
- [11] C. Piconi, "Oxide Ceramics for Biomedical Applications," *Encyclopedia of Materials: Science and Technology*, pp. 6595–6601, 2001, doi: 10.1016/B0-08-043152-6/01165-7.
- [12] "Zirconia Toughened Alumina (ZTA) INSACO Inc." <u>https://www.insaco.com/material/zirconia-toughened-alumina-zta/</u> (accessed Nov. 28, 2022).